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Abstract - Approximate analytic solutions for transient and steady-state

1800 domain wall motion in bulk magnetic material are obtained from the

S dynamic torque equations with a Gilbert damping term. The results for the

Walker region in which the transient solution approaches the familiar Walker

U u steady-state solutionare presented in a slightly new form for completeness.

oAn analytic solution corresponding to larger drive fields predicts an oscil-

latory motion with an average value which decreases with drive field for

reasonable values of the damping parameter. These results agree with those
4 U
! JN obtained by a computer solution of the torque equation and those obtained with
E-4

I u
m E the assumption of a very large anisotropy field.

m o I.ITRODUCTION

Z 4 In a previous paper , transient solutions for the motion of domain

o U walls in bulk magnetic materials were obtained from the vector equation of

M I'4 motion,

slU) - a (4
;o = -yM X (H ) ()

at yM bt

i r in which M is the saturation magnetization, y is the gyromagnetic ratio,

%.0oo
SH is the effective field including applied, stray, anisotropy, and exchange

0 a components, and a is the damping parameter. With the coordinate system

,i H and wall configuration as represented in Fig. 1, the solutions obtained for

En 0 0WC4
4 * 6, (, and the corresponding wall velocity, v, are as follows
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tn(tan 8/2) = C2 (t)[y - f v(z)dz] (2)
0

C2(t) (sin2 + hk)1 /2  (3)

and
Sh + sin pc cos (4)

2A z , (4)

o (1cla2) (sin20+h k)1 /2

in which y is obtained from

2h

(1 + c2) m L = (2h - sin 2 ) (5)
dt 2 o a

In these equations A is the exchange constant, hk is the normalized anisotropy

-7
field p Hk/M , h is the normalized applied field H z/M, and.0 = 4r X 10 mks.

The only approximation involved concerns a consistency condition which requires

that

dC t
d2 y - S v(-)dT] << C2 (t) v(t)

0

in order for c # f(y), a basic assumption in the trial solution. The solution

under this assumption indicates that this approximation is an excellent one

for the wall widths encountered in magnetic materials. This condition is

equivalent to neglecting the incremental velocity along the wall compared to

the velocity of the wall center. An alternate assumption which gives the same

result concerns the partition of Eq. 1 such that the same terms equate to

determine the structure constant, C2, and the velocity at the wall center, v,

during the transient as in the steady-state solution, which involves no ap-

proximation at least in the region 2h zc I 

For a stationary wall hz, C = 0 and the equations reduce to the familiar
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na(tan 0/2) = yv K/A For 2h / 1, the Walker solution corresponding

to 2h / = sin 29 predicts a contracted wall moving at constant velocity.
z

The transient solution corresponding to this constant velocity solution is

the one examined theoretically and experimentally in previous papers.

For completeness and for comparison, this solution is repeated in a slightly

different form together with the solution for 2h /a > i. All solutions

assume a step function drive field, h

Walker Region: 2h / < 1
z

Eq. 5, which predicts that 9 increases monotonically in time until it

reaches a steady-state value corresponding to 2h /ci - sin 29, is integrated

to yield

2h /
z

tan cp9

I + 1-(2hz/It)2 coth Ot (6)

.with

Yo "  1 - (2hz/X) 2 /(l + 2)

If the appropriate trigonometric functions of 9 obtained from Eq. 6 are

substituted in Eq. 4 and the hyperbolic function is expressed in terms of

exponentials, the "exact" solution of reference (1) is obtained. Note

that a factor in the effective damping 0 involves the drive field. With

2hz /c < 1, the steady-state value of 9 is less than W/4. Although cp itself

is well-behaved, Eq. 4 is sufficiently complex that the transient response

1/4 1/4 1/2 1/2 2h
contains an overshoot for 2hkk (1 + hk) 1(1 + hk) -hk < Z

as previously shown.

Limiting Case: 2h / tz



4

2h
In the limiting case, -z 1, either from Eq. 6 or directly from

integration of Eq. 5,

(yM/p.o)t /2
tan cp =

(yM/po)Ct/2 + (1 + 2)

The angle cp increases monotonically to r/4 and the solution is similar to

that of the previous case, with an overshoot in the transient response.

Oscillatory Region: 2h /a > I

In this particular case Eq. 5 predicts that ( continues to increase for

all time with a periodically changing rate. From Eq. 4 the velocity behaves

as sin 2(p displaced by the relatively small term ohh and modified by a posi-

tive term of oscillating magnitude in the denominator so that the wall velocity

is alternately positive (0 Z P < n/2) and negative (rT/2 < p < n) and repeats.

Again Eq. 5 may be integrated directly to obtain

2h /ci
z

tan P =

1+ (2h /c) - 1 cot wt

with

a = (2h /)2 -1 /(1 + C2
0

The periodic nature of the solution is apparent. The system is in a

steady-state oscillatory condition from the beginning with no transient in-

volved. The frequency depends on the drive field, hZ . In the limit of

2h / = 1 the previous solution is obtained.

The maximum velocity magnitude in time is the same as the maximum steady-

state velocity in the Walker region and corresponds to



tan p = hkl/4/(l + hk)
1/4

sin c cos = h /4(1 + hk) 1/4(1 + hk)1/ hk1/2]

sin 2  = hk 12[(l + hk) -/2 hk/2]

and

IV lA + 1/2 h1/2
max P k k

independent of the drive field, h . However, the time at which the maximum

occurs depends on hk and h and is given by
k z

- 1 (2hz/ ) (I + hk) /4/hk1 / 4

cot Wt = l

(2hz/) 2 ' 1

Figs 2, 3, and 4 give the velocity as a function of time for several values

of drive field and three values of hk corresponding to permalloys and

bubble-type materials.

2 2hz
For a (-,-) << I, the velocity is approximately equal to zero for

y = O,7F which corresponds to wt = 0, T . The velocity is also approximately

equal to zero for cp = /2 which corresponds to

cot tI  = -
(2h /l) - 1

In general more time is spent in the positive velocity region and the velocity

has a nonzero average value which is shown in Fig. 5.
2h

In the limit of very large drives, 2h /o >> 1 , but again a'2 ( ) << 1,z a'

the positive and negative half-cycles of velocty are an odd function about

wt = r/2, Iwt ' y H t and the average velocity is zero. If in additionz
hk >> 1 the velocity behaves as sin 2wt at very high frequencies.
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Conclusion

With suitable approximations a complete solution of the vector equation

of motion with a viscous damping parameter may be obtained which describes

the motion of a magnetic domain wall over a complete range of drive fields..

The solution pertains to a bulk magnetic material described by an exchange

,constant, an anisotropy constant, a saturation magnetization, and a damping

parameter. The oscillatory response predicted in the high drive region

probably may best be explored experimentally in materials with relatively

small saturation magnetizations and large anisotropy constants.

(5)These results seem to agree with those reported by Slonczewski and

by Walker and Schryer (6) in a computer solution of the torque equation.
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Figure Captions

Fig. 1. Coordinate System and Wall Configuration

Fig. 2. Normalized Velocity as a Function of Time for hk - poHk/M = 0.0005

and Various Drive Fields 2h z/I 2poHz/ M

Fig. 3. Normalized Velocity as a Function of Time for hk  P oHk/, = 1.0

and Various Drive Fields 2h l/ = 2o H z'/M

Fig. 4. Normalized Velocity as a Function of Time for hk P .oHk/M = 5.0

and Various Drive Fields 2hz / = 2PoHZ /M

Fig. 5. Average Velocity as a Function of Drive Field for Various hk

in the Walker Region and in the Oscillatory Region
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